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The Hamiltonian formalism for the N = 1, d=4  superconformal system is given. 
The first-order formalism is found by starting from the canonical covariant one. 
As the conformal supergravity is a higher-derivative theory, to analyze the 
second-order Hamiltonian formalism the Ostrogradski transformation is intro- 
duced to define canonical momenta. 

1. INTRODUCTION 

The properties of conformal N =  1, d=4  supergravity were given in 
Kaku et al. (1978) and van Nieuwenhuizen (1981). This was done starting 
from the supersymmetric extension of the Weyl action R~v - ~R 2. In that 
work the constraints and the transformation rules for the gauge fields are 
analyzed. Moreover, the action quadratic in the curvatures is found. Among 
other results the following two features of the conformal supergravity are 
made clear: (i) the gauge algebra closes off shell; (ii) the conformal model 
of supergravity shows that local supersymmetry can exist in flat space-time. 

Other important papers about conformal supergravity theories in 
diverse dimensions are collected in Salam and Sezgin (1989). 

The conformal N =  1, d=4  supergravity was also analyzed from the 
point of view of the group manifold approach (Castellani et al., 1981, 1991). 
Castellani et al. (1981) showed that it is possible to write a rheonomic action 
in the whole group manifold G, linear in the curvatures, which reproduce 
the same results obtained in Kaku et al. (1978) and van Nieuwenhuizen 
(1981) when the theory is restricted to the space-time. 

There is not an equivalent situation in d--3 because, as shown in van 
Nieuwenhuizen (1985), in this case the action for the conformal supergravity 
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is given by supersymmetric extension of the Lorentz-Chern-Simons theory. 
On the other hand, it is well known to be convenient to study these 

gauge theories from the canonical point of view. The canonical method 
allows one to separate unambiguously the physical degrees of freedom from 
the gauge ones, once all the constraints are known. Moreover, there are 
several reasons for considering the canonical formalism as more adequate 
with regard to the quantization of a supersymmetric gauge field theory. 
Many papers have devoted considerable attention to the construction of a 
Hamiltonian formalism for gravity and ordinary Poincar6 supergravity 
(OPS) (Deser et al., 1977; Nelson and Teitelboim, 1977, 1978; Pilati, 1978; 
Castellani et al., 1982; Henneaux, 1983, 1986; Diaz, 1986). 

In previous work the canonical covariant formalism (CCF) was for- 
mulated and later applied to several cases (D'Adda et al., 1985; Lerda 
et al., 1985, 1987; Foussats and Zandron, 1990, 1991). All these applications 
were given in the OPS. The OPS does not have the two properties (i) 
and (ii) mentioned above. Furthermore, the conformal supergravities are 
higher-derivative theories, which constitute an interesting subject from the 
theoretical point of view. The lack of attention devoted to the conformal 
supersymmetry may be due to the underdeveloped knowledge on how to 
treat higher-derivative field theory rather than to a lack of physical interest. 
Therefore, it is interesting to analyze in the canonical framework the con- 
straints of a superconformal dynamical system and to find the total Hamil- 
tonian as the generator of the time evolution of generic functionals. 
Consequently, the motivation of the present paper is essentially based on 
the properties of the conformal supergravities. 

In a recent paper (Foussats et al., 1992) the first-order CCF for the d = 
3 superconformal Chern-Simons theory was constructed. The second-order 
formalism was also developed. The second-order formalism, where the 
higher-derivative character of the theory becomes apparent, is described 
by a singular Lagrangian density containing higher-derivative terms (van 
Nieuwenhuizen, 1985). The construction of the second-order Hamiltonian 
formalism is nontrivial and it is very different from the case of the OPS 
(Deser et al., 1977; Nelson and Teitelboim, 1977, 1978; Pilati, 1978; Castel- 
lani et al., 1982; Henneaux, 1983, 1986; Diaz, 1986; Foussats and Zandron, 
1990). It is necessary to perform an Ostrogradski transformation to intro- 
duce canonical momenta (Nesterenko, 1989; Li, 1990, 1991; Li and Xin, 
1991). The purpose of the present paper is to construct the proper Hamil- 
tonian formalism for the N =  1, d= 4 conformal supergravity starting from 
the first-order CCF. Moreover, we will show the method to treat the theory 
in the second-order Hamiltonian formalism. The paper is organized as fol- 
lows: In Section 2, the definitions and the main results of the Lagrangian 
formulation on the group manifold are reviewed. In Section 3, starting from 



Hamiltonian Formalism 777 

the canonical covariant formalism, the set of constraints and the total Hamil- 
tonian of the system is found. In Section 4, the space-time decomposition is 
performed and the Hamiltonian as the generator of time evolutions is written 
as linear combination of first-class constraints. Finally, in Section 5, the 
method to construct the second-order formalism is analyzed. 

2. D E F I N I T I O N S  A N D  P R E L I M I N A R I E S  

To construct the CCF, we start from the Lagrangian formalism on the 
group manifold developed in Castellani et al. (1981). We briefly recall the 
results obtained in that paper that we are going to use later on. The confor- 
mal N =  1 supergravity in d= 4 dimensions is based on the superalgebra 
associated to the supergroup manifold G=SU(2, 2/1). The 24 generators 
TA of local symmetries associated to this superconformal group are 

TA = (Pa, M,b, Ka, D, A, Q~, S~) (2.1) 

and the corresponding 1-form gauge fields are 

/~A = ( V', co ab, K', D, A, ~ ,  ~0 ~) (2.2) 

The fundamental ~-valued 1-form is written 

I. t=VaPa+co'bMab+KaKa+DD+AA+~Q~+(o~S~ (2.3) 

the 2-form curvatures remain defined by R(p)=d/~ +/1/xp or, in and 
components, 

RA(p) = dp ~ - �89 C~dp  ~ ̂  I 1c (2.4) 

The choice of the bosonic gauge subgroup H o G  is not unique. In 
Castellani et al. (1981) it is taken as H =  (M, D, A) and this parametrization 
correctly reproduces the space-time theory developed in Kaku et al. (1978) 
and van Nieuwenhuizen (1981). Another important result in the group mani- 
fold approach is that the correct Lagrangian density is linear in the curva- 
tures RA(p). There is a one-parameter family of Lagrangian densities and 
the cohomology part of the total Lagrangian is equivalent, up to partial 
integration, to the Lagrangian quadratic in curvatures given in Kaku et al. 
(1978) and van Nieuwenhuizen (1981). In the space-time approach, the 
duality relation between the curvatures of the dilaton D and the axial gauge 
field A holds off-shell. In the group manifold approach the duality relation is 
obtained by adding to the cohomology Lagrangian 2'(cohom) a Lagrangian 
~(Maxwell). As is well known, in the group manifold this piece of Lagrang- 
ian is constructed by using the 2-form curvatures R(A) and R(D) and intro- 
ducing two 0-forms Fab and Gab. After the equations of motion are solved, 
these two nongeometrical objects are identified respectively with the 
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inner-inner components of the curvatures R(A) and R(D). In this way the 
duality relation in the group manifold formalism is obtained. Finally, to 
obtain a higher-derivative theory as is required by a conformal theory of 
supergravity, another piece of Lagrangian must be added. This piece, called 
At(constraint), is constructed by means of two 1-form fields: t ~b (bosonic 
Lagrange multiplier) and ~ (fermionic Lagrange multiplier). Thus, the final 
constraints in the first-order formalism on the group manifold are field 
equations of motion. Therefore, our starting point is the total Lagrangian 
density: 

= 50(cohom) + SO(Maxwell) + 5~ (2.5) 

whose explicit expression was given in equations (5.5)-(5.8) of Castellani 
et al. (1981), and thus we do not rewrite it here. 

So, in the first-order formalism on the group manifold the independent 
dynamical fields are 

fiA = (pA, Fab, G~b, t~b, ~) (2.6) 

i.e., the seven l-form gauge fields pA; the two bosonic 0-forms F ~b and G ab 
(Lorentz tensors); the 1-form t ~b (bosonic Lorentz tensor); and the 1-form 
~. (Majorana spinor). The physical fields of the theory are the graviton V ~, 
the gravitino ~ ,  and the axion A. The rheonomic Lagrangian (2.5) gives 
rise to the equations of motion for the conformal supergravity, which are 
solved for the rheonomic solution for the curvatures given in Castellani 
et al. (1981). 

Finally, the conformal gauge field K ~, the conformal gravitino q~, and 
the Lagrange multipliers t ab and ~ are expanded in the coframe (V ~, ~). 
Therefore, in the group manifold approach it remains clear that the confor- 
mal directions K" and r are not independent, but are expanded themselves 
in the coframe of the physical superspace G/H. 

These are some of the results obtained in Castellani et al. (1981) which 
we will use in the construction of the first-order CCF. 

3. THE FIRST-ORDER CCF. CONSTRAINTS AND 
TOTAL HAMILTONIAN 

First, we recall that there are two different versions in which we can 
formulate the CCF (Foussats and Zandron, 1990): 

(a) A version valid in the cases in which the supergravity is described 
by a linear Lagrangian density in the curvatures. 

(b) A version valid in the cases in which the supergravity is described 
by a polynomial Lagrangian in the curvatures. 
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In the first-order formalism the Lagrangian density on the group mani- 
fold is linear in the curvatures and corresponds to version (a). 

The corresponding 11 momenta 1]A that are canonical conjugate to the 
dynamical fields (2.6) are obtained by functional variation of the Lagrangian 
density (2.5) with respect to the velocities d/~ A. The canonical momenta do 
not depend on the velocities; therefore these relationships define primary 
constraints. They are as follows: 

�9 ab(c0) = Jrab(CO) ~ 0  (3. la) 

�9 a ( V )  = ~ra(V) - (cob~^ K d +  t b~ A Va)e~b~d + �89 A YS~/~ ~ 0  (3.1b) 

~ ( K )  = zv~(K) - o~ b~ ̂  Va e~b~a~O (3.1c) 

~ (A)=J r (A)+(1-~y) (3 i~^q~+~F~bVCA v d g a b c d ) - - i y V a A K a ~ O  (3.1d) 

O ( D )  = re(D) - �89 + y ) (  ~ ^ ~'5~o- G ~ V c ̂  V%obc,) ~.0 (3. le) 

alp( ~ ) = ~ (  ~ ) -- ~'Sra~ ^ K a -  ~'5~'a~, A V a ~  0 (3. l f )  

~(q~) = rc(~p) + 757~p A Va~0 (3.1g) 

~ b ( F )  = r,b(F) ~ 0  (3. lh) 

Oob(G) = r,b(G) ~ 0  (3.1i) 

�9 (Z) = 0(A,) ~ 0  (3. l j) 

�9 ~b(t) = O,b(t) ~ 0  (3. lk) 

The canonical Hamiltonian is defined by Hewn = d/~A^ I~IA- s and in 
the present case we find by direct computation 

//can = (-oae ̂  (-De b ̂  VC A Ka~.,~b~a-- 2 V ~ ̂  V b A K c ̂  Kaeabca 

- -  ~ ^ cTab~o A V c ^ KdF, abcd q- ( l -F y)  ~ A 75r A V ~ A Ko 

- �89 --y)~A 75~0^ ~A (0+ �88 ab A ~A ~ ^ Kae~b~a 

- �88 co ',b ^ (o ̂  ~,'q) ^ Vae~b~a + 3 iA A ~ A Tb~ A K b 

+ �88 ^ (o ̂  )'b~o ̂  V b - (p A ~'57<a)'b~ ̂  V ~ ̂  K b 

-- ~ A TsT~Tbqg A K'*A V b + 2 ~ ^  ?'s(:r~,bt, O ̂  V~ A K b 

- ~(1 - y ) ~ ^  o-.b~ ^ q a o'~acp~ ~ 

- [ ~ ( 1  - ~y)F.~F"~+~(~ + y ) G o ~ G  ~ W ^ V ' ^  V ~ ̂  V~e~,~ 

+ ~i(~ - k y ) F ~  r~o ^ V ~ ̂  V % ~ ,  
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+ ~o ~ ^ V~ ̂  t bc A V%.b~- -  D A V ~ ̂  t b~ ̂  Vd~abcd 

+ �88 r ~  ^ t bc ̂  V%~b~d+ �88 ~ ^ Z ^ r ~  ^ V%ob~a 

- P ^ ~ ^ r~r .Z  ^ v ~  ^ r~ro~ ^ ~ ^ r~ 

+ 3iA A ~A y~^ V~+ ~bA ysy~rb~A VaA V b (3.2) 

The total Hamiltonian Hr  (bosonic 4-form), which is a first-class 
dynamical quantity in the Dirac sense, is defined by 

H r  = Hr + AA(fi) ^ ~A(fi) (3.3) 

where A A are arbitrary Lagrange multipliers which can be determined, and 
given by AA(fi)= dfi A. 

When the properties (2.1) and (2.2) of Foussats and Zandron (1990) 
for the form-brackets are used, it is possible to show that the form-brackets 
between constraints give rise to expressions different from zero. That is 
to say, the primary constraints qbA are of second class. The condition of 
preservation of the primary constraints (or Dirac's consistency condition) 
in the CCF is given by 

d@A = ((I)A, H r )  ~ 0  (3.4) 

When the form-brackets appearing in (3.4) are explicitly computed, we 
arrive at 

d~A -- -[field equations of motion] + (~A, A B) ^ @s~0 (3.5) 

These are very important equations because they imply that there are 
no secondary constraints in the CCF. 

The formalism is completed by introducing the fundamental dynamical 
equation dA = (A, H v ) +  ~A, where A =A(fi, M) is a generic polynomial in 
the canonical variables (Foussats and Zandron, 1991). Consequently, 
according to (3.4), when A = ~ the field equations of motion in the frame- 
work of the CCF are obtained. We notice that when we put A = RA(p), the 
above dynamical equation gives rise to the Bianchi identities: 

dR A - ( R A, H r )  - OR A ~- 0 (3.6) 

The field equations of motion for the different values of the compound 
index A are 

d ~ b ( t )  = - [Re(V)  A Vaeabca] ,.~0 (3.7a) 

Y s Y ~  ^ Ra( V)] ,~ 0 (3.7b) da,(,~) = - [ r ~ r ~ R ( Q )  ^ v ~ -  ' 

d d ~ b ( F ) = - [ ~ F ~ b V C  ^ va  ^ Vet,  v fEcdef-3R(A)VC A Vatabcd]~O (3.7c) 
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d~ab(G) = - - [ 1 G a b V C  A Vd  A V e A vfF.cdef - �89 V ~ A Vdeab~a] ~ 0 (3.7d) 

= - ~ ( l + y ) [ - D  G A ^vdeob~a--2 ~ yC~AgdEabcd da)(D) 1 n ~b V ~ • ^ 

-R"(V)Gb~ ̂  V%ob,~+ K(Q) ^ r~o-k (S )  ^ r ~ ]  

+t"b ^ V~ A Vaeab~a+ ~ ^ VsV~ ^ V a~O (3.7e) 

d * ( A )  = - { - � 8 8  - ~ . ~b a , ~b- ~ V%~bcd) gy)(D F ^ W A V e ~ b ~ a - - ~ F  ~ ^ 7 ~ ^  

+iy[RO(V) A K~-  R~(K) A Vo] 

_3i(  1 _ '  - ~ y)[R(Q) ^ ~o-R( S)  A ~ ] 

--�88 ~b~ A Vb-- ] ( l  - gy)RJ a(V)Fb, A Vd~abcd},.~O (3.7f) 

d~ao(co) = - { [ R e ( V )  ^ Ka + RC(K) A va]eabcd 

I - t c d A  ~ 0  - - ~ A  yc~ A Vdeabcd + V e A V[agblcde) (3.7g) 

d ~ ( V )  = - [ R  be ̂  Kaeb~ao- iyR(A) A K. - R(S)ysy~ A tp 

e 1 -- +(1 +y)GbCK. A Va A V eb~ae+ ~ZA ysy~R(Q) 

- h A  TSYbY~q^ V b+ �89 ySy~yb~OA V b 

- - l  tbc A ~ A ~/d~F.bcda'q- I D H Z  A r5~a~ 

+Dnt  b~ ̂  Vdeb~d~] ~ 0  (3.7h) 

d ~ ( K )  =-[Rb~(M)  A va e.bcg - R(Q) ^ 7 5 7 ~ -  iyR(A) ^ V~ 

- (1  + y)Gb*Va/x Va ̂  Webcde] ~ 0  (3.7i) 

dr =-{�89 + y)rs~o ̂  R ( D ) -  3i(1 - ~y)q A R(A)  

-[~i(1 - �89 ~b- �88 + y)cpG ~b] ̂  V* A vdF.abcd 

1 a - - �89  A tb~ A vde,,b~d + ~y ~ A h A  TsYa~ 

- � 89  Zysya&A ~ A y a ~ + 2 y s y ~ R ( Q ) ^ K  ~ 

-75yo~R"(K)  + 757,Dn~ ^ V"} ~ 0  (3.7j) 

dqb(cp) = - { - � 89  +Y)75~ A R(D) + 3i(1 - �89 A R(A)  

+[~ i ( I  - gy)l . . . .  ~t 5g ~ b -- 2(1 + y)~G ab] A Vc A Vale.bed 

-2r~roR(s) ^ v~ + r~ro~o ̂  Ro( v)  

--2~/50"abZ A VaA V b} ~ 0  (3.7k) 

where D n is the exterior covariant derivative in H ~  G. 
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To find equations (3.7), the properties (2.1) and (2.2) given in Foussats 
and Zandron (1990) for the form-brackets were repeatedly used. 

Looking at equations (3.7a) and (3.7b), we see that they are the con- 
straints on the curvatures Ra(V) and R(Q) demanded in the conformal 
supergravities. The Maxwell equations (3.7c) and (3.7d) give respectively 
the rheonomic solutions for the curvatures R(A) and R(D). 

We complete the section by showing an alternative canonical method. 
The CCF also can be given by starting from an equivalent Lagrangian 
density. As shown in Castellani et al. (1981), by using the duality relation 
Ruv(D)=- �88 *R~,v(A) valid in the off-shell space-time, we can write the 
group manifold Lagrangian density (2.5) 

2" = R"b(M) ^ RCa(M)eabca - 8/~(Q) ^ ?,sR(S) + 4iR(A) ^ R(D) (3.8) 

This Lagrangian density, quadratic in the curvatures, is unique because 
the y dependence disappears. To construct the CCF from (3.8), we must use 
version (b) of the formalism (Foussats and Zandron, 1990). The treatment 
is rather different. The first step is to write the Lagrangian as a second-order 
polynomial in the variables A A= d/.t A instead of using the curvatures, and 
treat the dynamical fields/l A and A A as independent variables. Therefore, 
we must add to the resulting Lagrangian a set of constraints (AA-d/~A), 
with the corresponding arbitrary Lagrange multipliers/3A to be determined. 
Consequently, the Lagrangian density can be written as follows: 

5~ v+AA ^ VA+�89 VA~+(AA--dltA) AflA (3.9) 

Now, the independent field variables are pA, A A, and PA. For each one 
of these variables the corresponding canonical conjugate momenta must be 
defined. According to the results obtained in Foussats and Zandron (1990) 
it is also possible to prove in the present case that: 

(i) All the relationships between fields and momenta determine primary 
constraints and none of them are first class. 

(ii) The total Hamiltonian has a similar expression to that given in 
(3.3), but in this case q~A = HA + 13A and HA are the canonical momenta of the 
field variables/1 A = (co ab, V ~, K", D, A, 4, cp) which appear in the Lagrangian 
(3.9). The other primary constraints do not appear in the final expression 
of the total Hamiltonian. Moreover, dHr = (Hr, H r ) =  0, i.e., the first-class 
dynamical quantity Hr  is strongly conserved. 

In the higher-curvature supergravity the canonical Hamiltonian is given 
by//can = - v + �89 A A A e/x vA~ (Foussats and Zandron, 1990), which in this 
case is written 

/-/can = �89 A ACa(M) e~bca- 4A(Q)/x ) 'sA(S)+ 2iA(A)/x A(D) 

- �89 CCa(M)eabca+4C(Q) A 75C(S) -2 iC(A)  ^ C(D) (3.10) 
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where 

C a b ( M ) = - - o j a c  A f O c 6 + 2 ( V a A K b - - V b  A K a ) + ~ A ~ b c p  (3.11a) 

C(A) =i~ A 7sq~ (3.11b) 

C(D) = - 2  V a A g a - 1 ~ A q) (3.1 1 c)  

C(Q)=�89 ^~Crob--�89 ~i~)'sAA--(p)'aA V a (3.1 ld) 

C(S)=- �89189 (3.1 le) 

We do not complete the explicit computation for this version because 
it is straightforward and of course the results are equivalent to those already 
obtained. 

4. SPACE-TIME DECOMPOSITION 

Now, we must find the proper Hamiltonian J~ as the generator of the 
time evolution of generic functionals. This is carried out by choosing a 
privileged time direction in the coset manifold M = G / H  (physical super- 
space), losing the manifest covariance of the formalism (Foussats and 
Zandron, 1991). Therefore, to relate the first-order CCF with the canonical 
component formalism (CVF), we must first consider all the forms written 
in the holonomic basis. Thus, in particular, the gauge fields are written 
pA =p~ dx v (v=0,  1, 2, 3). Moreover, the form-brackets introduced in the 
CCF must be related to the Poisson brackets defined in the usual CVF 
according to equation (3.6) of Foussats and Zandron (1991). Second, we 
must consider fields and forms defined on a spacelike x ~ = t = t o hypersurface 
Y. of three dimensions. In the CCF, the time component of the momenta does 
not appear when they are restricted to the three-dimensional hypersurface 
after the time variable is chosen. So, the momenta HA(p) and the compo- 
nents lqA i (i= 1, 2, 3) are related by the equation 

HA ---g-l/2IIAi(x) eok dx J ̂  dx k (4.1) 

A similar expression holds for the corresponding constraints ~A. 
In the space-time decomposition (Arnowitt et al., 1982) it is useful to 

introduce the functions N; and N • which are respectively the shift and lapse 
functions and they determine the components of the four-dimensional metric 
tensor g,v- The vierbein's holonomic components 4eau split according to 

'leai = 3eai : eai, 3e,~i= e,, i, 4eai= 3eai+ (Nl)- lNin, ,  
(4.2) 

eai ebi : l~ a b "~- 12al, lb 

where na = n" 4ea, is the normal to the hypersurface Z. 

902/32/5-6 
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Once this is done, the Hamiltonian ~ (bosonic 3-form) remains defined 
from the Hamiltonian (3.3) by means of the equation 

fH~=fdx~ (4.3) 

where 

+ L oX~~ (x) + K o:,r (x) + ~ o ~ ( x )  + qoX'~(x) 
~d 

+ D o ~ ( x )  +AooC:~(x) + t~bhoo(x) + ~.oh(x)] dSx (4.4) 

and 

~ab(X) dSx = [field equation of motion 

+ [~,o(v) ^ Vb-- ~'b(V) ^ Vo] 

+ { va(K) ^ K~-  ~'o(K) ^/Ca} + 2(coo c ̂  ~'cb-- CO: ̂  Vc.) 

- ~ ^  o'.b~( ~ ) - ~b ̂  O'~b ~r(~0)]lz ~ 0 (4.5a) 

.Z/g~(x) dSx = [field equation of motion 

- cob. A ~b(V) + D A  ~o(V) 

--4Kb^ ~ 0 +  2K~ ̂  ~tr(D)- ~b ̂  y .~ (~ ) ] l z~0  (4.5b) 

J:X(x) d3x = [field equation of motion 

+ c0b. ̂  ~b(K) -- D A v~(K) 

- -4vb^  ~.b-- 2V~ ^ ~t(P) + ~ ^  y.~((P)]Iz~0 (4.5c) 

~ r  dSx = [field equation of motion 
a + ~ r  ~ ^  ~ , . (v)  + �89 ~,(D) 

+( �89  ' .o 3. 

- irsq~ ^ r  -~ r~ ^ ~'(~0)]lz ~ 0 (4.5d) 
~ ( x )  dSx = [field equation of motion 

- �89 y"~o ^ (I) .(K) + �89 ^ ~'(D) 

- (�89 �89 b -  ]iysA) ^ ~g((p) - cr"~'~ ̂  Vt,~b 

+ iys~ ^ Iv(A)+ ~',,V"^ V(~)]lz~0 (4.5e) 

Jut~~ dSx = - D1t(D) ~ 0 (4.5f) 

~A(x)  dSx = - Dg(A) ~ 0  (4.5g) 

hob(x) dSx = [field equation of motion]lz ~ 0 4.5h) 

h(x) dSx = [field equation of  motion]lz ~0  (4.5i) 
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In equations (4.5f) and (4.5g) we respectively defined 

O n ( D )  = d l t (O)  + V" A n a ( V )  - K a ^ ha (K)  ] - - ~ o ^ n ( c p ) +  � 8 9  (4.6a) 

O n ( ~ )  = a~(A)  + 3._ tq  ^ 7sn(  cp) - ~i~ ^ ysl t(  ~ ) (4.6b) 

To arrive at equations (4.5) we made the following prescription on the 
constraints: 

~ l z  = ~ ~0  (4.7) 

A detailed discussion about the role of the constraints is given in 
Foussats and Zandron (1991). 

Finally, we note that in equations (4.5) the expressions enclosed in the 
brackets are weakly zero quantities because they are given by the correspond- 
ing equation of motion plus a linear combination of the primary second- 
class constraints ~,~. Moreover, it is possible to show that the constraints 
(4.5) are first class (Foussats et al., 1992) because the form-brackets between 
them gives weakly zero quantities. This shows how, starting from the CCF, 
the Hamiltonian of the system directly appears written as an appropriate 
linear combination of first-class constraints. Of course, an alternative way 
to write the Hamiltonian (4.4) as a suitable linear combination of constraints 
is to use the decomposition of the conformal gauge fields (K a, r and the 
Lagrange multipliers (t ab, Z) in the coframe ( V a, ~ ), a result obtained in the 
group manifold formalism. 

The very different treatment of the conformal supergravity with respect 
to the OPS appears when we have to treat the second-order CVF. In the 
next section we will analyze this question. 

5. SECOND-ORDER C V F  

We begin by asserting two peculiarities of the CCF: 
(i) As already pointed out, the CCF is not a proper Hamiltonian for- 

malism. It does not define a standard mechanical system because it does not 
really propagate data defined on an initial hypersurface E. The generator of 
time evolutions (or proper Hamiltonian) is ~ ,  as seen above. 

(ii) The Poisson brackets introduced in the CVF yields more informa- 
tion than the form-brackets (Foussats and Zandron, 1991). 

Even so, in the OPS, by starting from the CCF, the second-order Hamil- 
tonian formalism can be recovered by projecting on E the total Hamiltonian 
HT and the remaining quantities defined in the CCF. This is possible because 
the OPS is not a higher-derivative theory and further in the CVF the vanish- 
ing of the time components of the momenta occurs naturally. Once in the 
OPS one finds an expression equivalent to that given in (4.4); to arrive at 
the second order, the torsion equation of motion must be used to write 
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co~ b = cJub(e, ~) .  Furthermore, in the OPS, in both the CVF and in the CCF 
it is possible to define a second-order momentum (Deser et al., 1977; Nelson 
and Teitelboim, 1977, 1978; Pilati, 1978; Castellani et  al., 1982; Henneaux, 
1983, 1985; Diaz, 1986; D'Adda, et  al., 1985; Lerda et al., 1985, 1987; 
Foussats and Zandron, 1991), that is canonical conjugate to the graviton 
field 4e~ u . This momentum has vanishing time component and its spatial 
components are related to the spatial components of the first-order momen- 
tum HaS(e) (D'Adda et al., 1985; Lerda et al., 1985, 1987; Foussats and 
Zandron, 1991). 

In the conformal supergravity case, as it is a higher-derivative theory, 
to define momenta in the second-order formalism it is necessary to make an 
Ostrogradski transformation (Nesterenko, 1989; Li, 1990, 1991 ; Li and Xin, 
1991). In this way, nonzero time components of the momenta are obtained. 
Therefore, for a higher-derivative theory, the second-order CVF cannot be 
recovered from the CCF. 

We turn to the Lagrangian density (3.8) and we consider reduced forms 
(i.e., forms defined on the coset manifold M =  G / H ) .  To write the second- 
order Lagrangian density in components and only containing the physical 
fields 4eal~ (graviton), ~u (Q-gravitino), and A~ (axion) we proceed as follows 
(Kaku et  aL, 1978; van Nieuwenhuizen, 1981): 

(a) The equation of motion (or constraints) R ~ ( V ) = 0  can be solved 
algebraically to obtain the expression of the spin connection: 

Co~b(e, ~, D)  = --~o~"b(e) + (D  ~ 4ebu - - D  b 4ea) 

+ �88 ( _ (5 .1)  

(b) The equation of motion (or constraints) ~'~R~v(Q) = 0 can be solved 
algebraically for the conformal gravitino ~Pu: 

1 v ~P~ = ~7 / (Suv+ J~5 *S~v) (5.2) 

where 
I 3 .  

S~v = ( ~ ,  + ~ D ~ u  - z,A~rs~.) - (~t , - ,  v)  (5.3) 

*Su~ is the dual of S and ~ is the Lorentz covariant derivative. 
(c) The field equation of motion for the proper conformal gauge field 

K .  u is algebraic, so that K.~ can be eliminated: 
gap = - -  �88 [~vu(M) - ~g~ v~(M)] 4ear + I r~Ra v( a)~a 4eaV 

~ i * R v ~ ( A )  "e~ v (5.4) 

where ~ ( M )  = R ~ ( M )  for K~, =0. 

Inserting equation (5.4) in the Lagrangian density (3.8), we find the 
expression (2.8) of Kaku et  al. (1978). It is possible to show that the dilaton 
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field D u reduces to the Lagrangian density. Therefore, once equations (5.1) 
and (5.2) are used, the remaining fields are the only physical ones. It is 
sufficient to analyze the first terms of the Lagrangian (2.8) of Kaku et al. 

(1978) to see that the second-order CVF must be constructed in a very 
different way than is done in the OPS case. 

We do not write all the final expressions for the constraints, but give 
here only the constructive method and the conclusions. 

Looking at the first three terms of the Lagrangian under consideration, 
i.e., 

e [ R " ' ( M ) R , u ( M )  - �89 + 4e"'P~o?,5~/~,@,~ou +.  �9 �9 (5.5) 

we can see that these terms contain second-time derivatives on the vierbein 
components 4ea, and on the gravitino field components ~ .  So we are in the 
presence of a constrained system with a singular higher-order Lagrangian. 
It is reasonable to try to work as closely as possible to the Dirac (1964) 
conjectures for the usual constrained systems. Consequently, we define the 
following independent dynamical field variables: 

4eap : (4eai, 4eao : nan • + i N eai) (5.6a) 

bait : 630 4ea~ (5.6b) 

~ (5.6c) 

7/u = 63o~F, (5.6d) 

A~ (5.6e) 

The Ostrogradski transformation (Nesterenko, 1989; Li, 1990, 1991 ; Li 
and Xin, 1991) introduces, respectively, the following canonical momenta: 

II~U = Ob ~ - v [~?(0vb~ ) j (5.7a) 

(2) 05~ 
1-If - (5.7b) 

~( Ooba~ ) 

= O f  b -  [ ~ ]  (5.7c) 

(2) 32" 
II" - (5.7d) 

0(0o .) 
02'  

II"(A) - - -  (5.7e) 
O(OoAJ 
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where the Poisson brackets for canonical conjugate variables are given by 

I4eau(x) (1) l [-(I) 
Ha~(y)J = -  L n ; ( y ) ,  4e"u(x)]=aab (~Uv 5 ( x - y )  (5.8a) 

[ (~) 1 F(~) ] 
bau(x), HbV(Y)J = -- = 6"b 6 ( x - - y )  (5.8b) Lnr bOu(x) au 

[~(a)(X) ' (1) 7 F (I) 
= Ln(~)(y), f.(~)(x)] = a~j] a ( x - y )  (5.8c) 

fl.(")(x), l l (m(y)J=LH(e)(y) ,  ~ ~ fl~,'~)(x) =x(~'~,(e, 6~u 5 ( x - y )  (5.8d) 

[Am(x ), H~(y)] = - [ W ( y ) ,  Am(x)] = 6~u a ( x - y )  (5.8e) 

Using these definitions and relations, one can pass from the Lagrangian 
formalism to the second-order CVF. We give here the conclusions, but we 
do not write the explicit results. 

1. In this higher-derivative singular system the canonical Hamiltonian 
is written 

(1) (2) O) . (2) 
O~can = bau 1-b ~ +/;au II~ + fluH u + fluH u + AuHU(A) - ~ (5.9) 

where ~ is only a functional of  the field vari.ables (5.6) and their first space- 
time derivative, and we replaced 4~a, and ~, by ban and flu, respect!vely. 
Once the Lagrangian density is explicitly used the velocities b"u and #u are 
eliminated from YF .. . .  Of course, the fields ban and r/u cannot be eliminated 
from the formalism. 

2. The system has a set {f~(f)} of bosonic and fermionic primary con- 
straints and therefore the total (or extended) Hamiltonian density is given 
by 

~ _ c ( k )  (5.10) 

where the Lagrange multipliers ~{k) can be evaluated by means of the Hamil- 
ton equation ,4 = [A, Yt~r]pB with ~ r  = S d3x fit~ 

3. From the stationarity of the primary constraints, the secondary con- 
gtraints are found according to the Dirac algorithm: 

f~(f) = [~k- , ) ,  Jg'r]PB (5.11) 
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This algorithm must be continued until ~(b k) satisfies 

s k+') = [f~(b k), ~ r ]en  = '~ b,~Oa'~ n(-) (5.12) 

4. It is also possible to conclude that the system in the second-order 
formalism has primary and secondary constraints. This set contains con- 
straints of both first and second class. Each first-class constraint corresponds 
to a gauge invariance of the theory under a local gauge transformation. 

The presence of second-class constraints makes it necessary to follow 
the Dirac (1964) conjectures, i.e., the Dirac brackets must be defined from 
the Poisson brackets. Then, as is usual in constrained Hamiltonian systems, 
the second-class constraints must be taken strongly equal to zero and so 
they can be eliminated from the formalism. 

6. CONCLUSIONS 

The N = 1, d= 4 conformal supergravity can be formulated in the picture 
of the first-order CCF, starting from the Lagrangian formalism on the group 
manifold. The primary second-class constraint ~a allows us to write the 
total Hamiltonian H r  because there are no secondary constraints in the 
formalism. By making the space-time decomposition and by straightforward 
computation it is possible to find the proper Hamiltonian ;/~, as a generator 
of time evolutions, as a suitable linear combination of the set of first-class 
constraints ~A(x). As the superconformal system is described by a higher- 
derivative Lagrangian, the second-order CVF is nontrivial and its construc- 
tion is very different from that given for the OPS. An Ostrogradski trans- 
formation is needed to introduce canonical momenta. In dimension d = 4  it 
is necessary to perform the Ostrogradski transformation on both the bosonic 
(4e~u) and the fermionic (4,) fields. We notice that in the d = 3 conformal 
theory (Foussats and Zandron, 1991) it is necessary to perform such a 
transformation only on the bosonic field because the corresponding super- 
symmetric Chern-Simons Lagrangian does not contain second-time deriva- 
tives on the fermionic field ~,. Finally, it can be shown that in the second- 
order Hamiltonian formalism there are primary and secondary constraints 
and they are of first and second class. The appearance of second-class con- 
straints, characteristic of (super)gravity, makes it necessary to follow Dirac's 
(1964) conjectures and so the Dirac brackets must be introduced. 
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